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Abstract— In terrain classification task, data within the same
terrain exhibit a high intra-class diversity, often leading to a
common real-world Out-of-Distribution (OOD) problem. Some
studies employ rigorous methods to control the similarity
between the training and test set distributions, thereby ignoring
this real-world OOD problem. To delve into this challenge,
we collect a high intra-class diversity terrain classification
dataset TCPOSS. We observe a significant performance decline
when terrain classification models encounter real-world OOD
data. To quantify the severity of real-world OOD, we propose
a metric KLConf. Experiments show a strong correlation
between KLConf and the decline of model performance on
the test set. The dataset and relative codes will be released
at https://github.com/weekgoodday/TCPOSS later.

I. INTRODUCTION

Terrain classification is an important task for autonomous
mobile robots to figure out what kind of surface they are on.
With this function, robots can plan a path that is as safe and
fast as possible [1], [2], [3]. With the development of deep
learning [4], visual terrain classification methods achieve
near-perfect performance when test scenes are similar to
training scenarios [1].

However, when applying the model trained on [1] to
classify terrains in campus environments, we observe a
drastic decline in performance. Certain categories such as
sand terrain are completely unidentifiable by the model.
Similar phenomenon is observed in [5][6]. The reason lies
that the deep model does not truly learn to distinguish
between asphalt, grass and sand terrains; instead, it has
learned “shortcut” to distinguish between classes present in
the training data [7]. This phenomenon severely limits the
applicability of deep models. This kind of problem arises
especially when the training set cannot comprehensively
cover all data distributions within a class due to intra-class di-
versity. This real-world Out-of-Distribution (OOD) problem,
which commonly occurs in real-world scenarios, has been
scarcely discussed within the existing OOD frameworks.

A major characteristic of terrain data is that the same
type of terrain may exhibit significant intra-class diversity
(see Fig. 1). And it’s expensive to collect and label terrain
data [2]. Therefore, visual terrain classification model may
not traverse all possible data representations of existing
categories during training.

To delve into this real-world OOD challenge, we collect a
terrain classification dataset of high intra-class diversity, and
conduct different training and test set divisions based on the
severity of the OOD problem. Then we analyze the model
performance when facing OOD data of various intensities.
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Fig. 1. Intra-class diversity illustration in terrain classification. The green
represents grass class, red represents asphalt, yellow presents flagstone.

To figure out whether the model’s output can be believed,
we apply multiple classic confidence estimation methods to
have the terrain classification model output a confidence
score alongside its prediction. With confidence evaluation,
we propose KLConf metric to quantify the disparity between
training and deployment scenarios.

The contributions are summarized as follows:
1) A terrain classification dataset named TCPOSS is pro-

posed, which comprises terrain data of 10 categories in
Peking University, reflecting rich intra-class diversity.
This dataset is divided into four subsets: Entry, Easy,
Medium and Hard, with test data reflecting OOD chal-
lenges from easy to hard. To the best of our knowledge,
this is the first dataset comprising various degrees of
OOD problems for terrain classification.

2) Experiments are conducted to analyze the influence of
various OOD intensities on the performance of terrain
classification model. Experimental results show models
with various architectures and configurations all expe-
rience performance degradation when facing this OOD
problem. Feature space analysis indicates that intra-class
diversity is the main reason for this degradation in real-
world datasets.

3) A method to quantify the OOD intensity is proposed.
The KLConf metric evaluates the difference in confi-
dence distribution between training and test set. Exper-
iments show that KLConf can effectively quantify the
degree of real-world OOD and predict the performance
of classification model on test set without ground truth.

https://github.com/weekgoodday/TCPOSS


The rest of this paper is organized as follows. Section II
is the related works and datasets about terrain classification,
OOD problem. Section III introduces our dataset TCPOSS.
Section IV shows the performance of terrain classification
model. To quantify the OOD problem, Section V compares
classic confidence estimation methods and proposes KLConf.
Finally, Section VI gives the conclusions and future works.

FL2-08S2C-C 1024

7
6
8 224

2
2
4

1
4
4

(a) (b)

Fig. 2. (a) Platform used for data collection; (b) Data process pipeline.

II. RELATED WORKS

A. Terrain Classification

From the perspective of sensor inputs, the solution of ter-
rain classification can be classified into two main categories:
exteroceptive-based and proprioceptive-based [8]. Camera is
the most popular exteroceptive sensor [2]. There are also
some researches using input signals like spectral data [9] and
acoustic data [10]. Every kind of signal has its characteristics.
The proprioceptive signal won’t be interfered by light con-
ditions, but it’s a contact-based signal and is susceptible to
robot body self-vibration [2]. This article mainly focuses on
image signals. Compared with proprioceptive signals, images
have rich textures and can be acquired before contact.

Some terrain classification studies use terrain images sim-
ilar to our datasets [1], [9], [11], [12], [13]. But only in
[1] and [9], the terrain images are publicly available. The
training and test sets of both datasets have already been
sampled from sequences and exhibit similar morphologies.
The OOD problem in current datasets is not obvious and the
intra-class diversity is ignored, which deviates from the real-
world scenarios. To the best of our knowledge, our dataset
TCPOSS is the first dataset comprising various degrees of
OOD problems for visual terrain classification.

B. OOD Problem

The Out-of-Distribution (OOD) problem refers to the
scenario where a model encounters test data that does not
belong to the potential distribution of the training set [14].
In such cases, the model should not be trusted or used for
inference. Due to the unknown potential distribution of the
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Fig. 3. Sample images of 10 terrain classes of TCPOSS.

training set, there is no unified definition of OOD data. Faced
with OOD problem, there are two basic pipelines to address
it: OOD detection [15] and OOD generalization [16]. Not
all OOD data can be generalized by models, but with OOD
detection we can at least identify whether the data exceeds
the model’s applicability, making the system safer and more
robust [17]. Among OOD detection methods, those based on
model uncertainty or confidence fully leverage the intrinsic
characteristics of the model, requiring no specification of
OOD data or excessive model modifications [18].

Public datasets in OOD detection primarily use image
classification datasets sourced from different origins [19],
[20]. Some researches define certain datasets as ground truth
for OOD [21], [22], while others generate OOD images
through generative models [23]. However, these benchmarks
do not generally represent realistic distribution shifts, such
as train/test splits that are likely to occur in real-world
deployments [24], [25].

III. DATASETS

A. Real-world Terrain Data Collection

This research collects a visual terrain classification dataset,
named TCPOSS. The data are collected in Peking Univer-
sity, where terrains with diverse morphologies are abundant
throughout the campus. The data are collected in autumn, and
some terrain surfaces are covered with fallen leaves, causing
interference to visual classification. We collect data during
the day and in the evening, the change in light also introduces
disturbance to visual classification. Our UGV, shown in Fig.
2, has a FL2-08S2C-C camera. With an original resolution
of 768*1024, we crop a 224*224 image patch close to the
ground as the data input. Through manual control, the speed
of the robot when collecting terrain data is between 0.5m/s
and 1m/s, simulating real-world robot movement states.

As shown in Fig. 3, the collected data are categorized
into 10 classes based on terrain surface, including: asphalt,
grass, cement, brick, board, gravel, sand, flagstone, plastic,
soil. The data are sequential, and every 1 second includes 15
image frames. We use the first frame per second as input.

TABLE I
DATASIZE AND SEQUENCES OF 10 CLASSES IN OUR DATASET.

Asphalt Grass Cement Brick Board Gravel Sand Flagstone Plastic Soil Total

Datasize 1299 1158 818 138 682 160 231 1322 1169 225 7202

Sequences 9 13 9 3 9 7 3 19 14 4 90



TABLE II
DATASIZE AND FEATURES OF EACH CATEGORY IN DIFFERENT DATASET DIVISIONS

Dataset
Datasize of each category (Train/Test)

Relation between Train/Test Feature
As Gr Ce Bo Br Gr Sa Fl Pl So Total

Entry
897/
402

805/
353

708/
289

97/
41

489/
193

111/
49

154/
77

930/
392

818/
351

157/
68

5166/
2215

same sequence
similar appearance

ID

Easy
1103/
196

957/
201

625/
193

79/
59

545/
137

87/
73

154/
77

1117/
205

905/
264

134/
91

5706/
1496

different sequences in same area
relatively similar appearance

Low
OOD

Medium
894/
405

752/
406

532/
286

79/
59

528/
154

87/
73

154/
77

1040/
282

905/
264

134/
91

5105/
2097

different sequences in same area
relatively different appearance

Medium
OOD

Hard
894/
405

769/
389

594/
224

79/
59

467/
215

116/
44

154/
77

958/
364

789/
380

134/
91

4954/
2248

sequences in different areas
different appearance

High
OOD

As shown in Tab. I, after selecting valid segments, there
are a total of 7202 valid image frames, in 90 independent
sequences.

B. OOD Dataset Generation

As shown in Tab. II, according to the difference between
training and test set, we divide the dataset into four levels:
Entry, Easy, Medium and Hard. Entry randomly selects 30%
of the images as the test set with remaining 70% as the
training set. Thus, all categories in training set and test set
are from the same sequence with similar appearance, which
can be considered within the same distribution. For Easy,
compared with training set, all categories in test set are
from different sequences in the same area with relatively
similar appearance. For Medium, compared with training set,
all categories in test set are from different sequences in the
same area, but the appearance of some categories is relatively
different from training set. For hard, some categories are
from sequences in different areas with different appearance.

Taking the grass category as an example, Fig. 4 specifically
illustrates our criteria for dividing training and test set. For
Hard, the data from Area A in the evening along with all
the data from Area C are used as the test set, while the rest
are used as the training set. For Medium, the data from Area
A in the evening, along with part of the data from Area C
and D, are used as the test set, while the rest are used as the
training set. For Easy, one sequence from Area A during the
day and one sequence from Area B are used as the test set.

In summary, we don’t artificially define which data is
OOD, while there exist various degrees of OOD challenges in
different divisions. By rationally dividing the training and test
sets, we aim to simulate the common OOD problem caused
by intra-class diversity frequently encountered in real-world
environments.
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Fig. 4. Illustration of dataset division (taking grass class as an example).
The grass is all around the campus and exhibits diverse morphologies. The
Hard division uses S3, S4, S7 and S8 as test set, while others as training
set, which encounters severe OOD in test set. Similarly, the Medium and
Easy includes illustrated sequences in test set, while others as training set.

IV. TERRAIN CLASSIFICATION ON REAL-WORLD OOD
DATASET

In this section, we evaluate the terrain classification model
on both the public dataset [1] and our dataset. Through model
performance and feature space of every category, we analyze
the reasons for model performance degradation and compare
the characteristics of each category across datasets. We use
“Dataset [1]” to denote the public dataset in [1].

A. Terrain Classification Model

The deep classification network adopts the architecture
described in [1], which consists of two dense layers after the

TABLE III
MODEL CONFIGURATIONS AND CORRESPONDING PERFORMANCE ON VARIOUS DATASETS

Model configuration Performance on test set

model in [1]
no freezing parameters
& data augmentation

more training epochs
& learning rate decay

Dataset [1] Entry Easy Medium Hard

✓ 99.7%(±0.2%) 92.7%(±0.7%) 77.2%(±2.9%) 57.1%(±2.0%) 45.7%(±1.7%)

✓ ✓ 99.9%(±0.1%) 94.6%(±2.2%) 78.6%(±5.7%) 60.7%(±5.7%) 45.4%(±6.3%)

✓ ✓ ✓ >99.95% 98.9%(±0.2%) 88.1%(±3.2%) 68.2%(±5.5%) 45.8%(±2.6%)



TABLE IV
DIFFERENT BACKBONES AND CORRESPONDING PERFORMANCE

Backbone
Performance on test set

Dataset [1] Entry Easy Medium Hard

Mobilenet >99.95% 98.9% 88.1% 68.2% 45.8%

Densenet >99.95% 99.1% 88.8% 70.1% 49.2%

Resnet >99.95% 99.2% 87.6% 67.2% 48.1%

backbone of MobilenetV2 [26]. This architecture produces
a logit vector of dimensions corresponding to the number
of classes, which is optimized using cross-entropy loss with
one-hot label. In [1], the parameters of the MobilenetV2
backbone are frozen, utilizing the pre-trained parameters on
ImageNet, only training the subsequent classifier.

Building upon this foundation, we enhance the model
by removing parameter freezing and introducing additional
data augmentation techniques, including color normalization,
horizontal/vertical flipping, and random angle rotation. We
extend the training epochs to 40 and incorporate exponential
learning rate decay. As shown in Tab. III, the performance
after applying these configurations on various datasets has
been improved compared to the origin. Based on the optimal
configurations, we switch to different feature extraction back-
bones, such as Densenet121 [27] and Resnet50 [28] as shown
in Tab. IV. The results indicate that the performance gap
introduced by different backbones is not substantial. Dataset
selection emerges as the primary factor influencing model
performance.

Without loss of generality, this study focuses on the Mo-
bilenet backbone and the optimal model configurations. The
following analysis can reflect the common characteristics of
deep visual classification models.
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Fig. 5. Performance on different categories. Lines of different colors
represent the recall of each category on different datasets, while the bars
represent the data size of each category.

B. Terrain Classification Results

As shown in Tab. III and IV, our datasets are relatively
more challenging. When the test set is in-distribution, the
model achieves a near-perfect performance. However, as the
model encounters strong OOD problems, there is a signifi-
cant decline in performance. The magnitude of performance
degradation is independent of architectures of deep models,
indicating a common issue faced by deep models.

Besides the overall accuracy, different categories face
various degrees of OOD across different datasets as shown
in Fig. 5. Some categories, such as sand and soil, exhibit
similar performance across different datasets as their visual
morphologies in campus tend to be uniform. While categories
with high intra-class diversity, such as grass and flagstone,
show significant performance differences across different
datasets.

C. Real-world OOD Problem Analysis
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Fig. 6. Categorical analysis of OOD intensity on 4 datasets. (a) Radar
chart illustrating the recall of each category across 4 datasets. (b) Radar
chart illustrating precision. (c) The trend in the total number of categories
with recall/precision less than 0.8 across 4 datasets. (d) Performance of each
category across 4 datasets. The x-axis represents the number of datasets on
which the recall is less than 0.8, and the y-axis represents precision.

We begin by further analyzing the recall and precision
of each category. As shown in Fig. 6, the areas enclosed
by polygons of different colors in (a) and (b) indicate the
mean recall and precision of 10 categories across 4 datasets.
(c) shows the total number of categories with precision and
recall below 0.8. The performance degradation reflects the
OOD degree of datasets. (d) presents the performance of
each category based on recall and precision. Some additional
conclusions can be drawn from the categorical analysis. For
instance, categories like grass, asphalt, cement, and flagstone
in our dataset encounter strong OOD problems in Medium
and Hard. The board category exhibits low recall and high
precision, indicating that the model is less likely to output
board class, which may be attributed to the small data size.

Besides the accuracy, we observe the model’s feature
space. Sand, plastic, grass and flagstone are selected as
representative categories. As shown in Fig. 7, the dashed
circles illustrate the potential training distribution of these
categories in the feature space after dimension reduction.
Overall, data of the same category in Easy exhibit a better
correspondence between training and test set compared to
the Medium and Hard. The classes with low recall share a
common characteristic: the data clusters in the test set are
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Fig. 7. Feature space visualization on Hard, Medium and Easy. After passing through the feature extraction network, the 1280-dimensional features of
the training and test sets are jointly subjected to T-SNE, then plot separately on two graphs. The first row represents the feature space of the training set,
while the second row represents the test set. Different colors indicate the different labels of each data point. The annotated numbers represent the recall
of specific category.

not in the distribution of the training set. This indicates that
the decline in performance is caused by training data failing
to comprehensively cover the entire potential space due to
intra-class diversity. Moreover, on the test set of Hard, the
grass points fall within the distributions of the gravel and
soil categories, corresponding to the fact that inputs of the
grass class are misclassified to gravel and soil. This suggests
that the model learns feature extraction methods through the
training data, but features extracted by the learned methods
may not be comprehensive enough to distinguish test data,
leading to confusion between categories.

In reality, the most direct way to address the OOD problem
caused by intra-class diversity is to collect as comprehensive
training data as possible, enabling the model to extract
sufficient features for classification. However, it is almost
impossible to exhaustively capture the intra-class diversity
in the real world. Therefore, the first step in addressing
this OOD problem is to quantify the OOD intensity on test
samples without ground truth. Then we can select OOD
samples and incorporate them into training.

V. QUANTIFICATION OF REAL-WORLD OOD PROBLEM
VIA CONFIDENCE EVALUATION

To address the decline in model performance caused by
OOD problems, this study explores whether the model can
detect the presence of OOD in testing and measure the sever-
ity of OOD. In the methods of OOD detection, confidence-
based methods require only simple modifications to the
model and are applicable to classification models. This sec-
tion compares five classical confidence estimation methods.
Experimental results demonstrate that existing confidence
methods exhibit performance degradation when confronted
with strong OOD scenarios, but they can effectively reflect

the differences between the test distribution and the training
distribution. Based on confidence methods, We propose
KLConf metric to quantify the OOD intensity of test set.

A. Confidence Methods

This section compares five classical confidence estimation
methods: Softmax Confidence (SM) [19], MC Dropout (MC)
[29], Ensemble (EM) [30], Mahalanobis Distance (MD) [31],
Evidential Deep Learning (EDL) [32].

Specifically, in a classification task, we denote the input
of deep model as x, and the last layer output of class c as
fc(x). Generally, the vector after Softmax layer is regarded
as the probability of model prediction p(x). It’s a discrete
vector with the same dimension as the number of classes C:

pc(x) =
exp(fc(x))∑C
i=1 exp(fi(x))

(1)

where pc(x) is the cth component of p(x), representing the
predicted probability of class c.

The Softmax Confidence is the maximum component of
the predicted probability p(x):

SMconf (x) = max
c

pc(x) (2)

1) Calibration-based: As Softmax confidence is always
overconfident [33], temperature scaling is applied to the
Softmax confidence with a temperature parameter T [34]:

Tempconf (x) = max
c

exp(fc(x)/T )∑C
i=1 exp(fi(x)/T )

(3)

Subsequently, the confidence value is calibrated down-
ward, while maintaining the relative order of confidence
among the samples.
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2) Ensemble-based: Given an ensemble {M}Mm=1, the
total uncertainty can be modeled as aleatoric uncertainty and
epistemic uncertainty [35], which can be given by:

au(x) = EM[H(p(x,M))]

eu(x) = H(EM[p(x,M)])− au(x)
(4)

For Monte-Carlo Dropout, p(x,M) is acquired by mul-
tiple forward passes with Dropout layers activated. For En-
semble, M models are trained to get p(x,M). The negative
of uncertainty can be viewed as confidence.

3) Distance-based: The distance between the test sample
and class center of training samples µc in feature space
can be used to measure confidence. Mahalanobis Distance
[31] calculates covariance matrix Σ of training samples in
the feature space, and uses the negative of distance as the
confidence with predicted class ŷ:

MDconf (x) = −(f(x)− µŷ)
TΣ−1(f(x)− µŷ) (5)

4) EDL-based: Based on the Dempster-Shafer Theory
(DST) [36] and the subjective logic (SL) [37], evidential deep
learning (EDL) [32] is developed to learn a better metric of
confidence following a prior Dirichlet distribution. Given a
training sample x(i), the loss function is thus defined:

L(i)
EDL(y

(i), e(i)) =

C∑
c=1

y(i)c

(
logS(i) − log(e(i)c + 1)

)
(6)

where e(i) ∈ RC
+ is the learning evidence. S is the strength

of a Dirichlet distribution Dir(p|α) and is defined as S =∑C
c=1 αc. αc can be calculated as αc = ec + 1.
In EDL, the confidence of predicted class ŷ is given by:

EDLconf (x) = αŷ/S (7)

The detailed implementation of confidence methods is
described as follows. For MC, our model incorporates two
Dropout layers in the classifier. When testing with MC
Dropout, a sample will forward pass five times with Dropout
layers activated. For EM, we train five random initialized
models with data augmentation. For MD, the covariance
matrix Σ becomes a singular matrix because of the high-
dimensional feature space. We use PCA to reduce the
dimension as there is considerable redundancy within the
feature space. For EDL, to mitigate the miscalibration linked
to the over-fitting of the negative log-likelihood (NLL),

we incorporate evidential uncertainty calibration (EUC) loss
LEUC [38]. The total loss function of EDL is:

Ltotal = LEDL + 0.2× LEUC (8)

B. Confidence Evaluation Results

First, we observe the performance of classic confidence
estimation methods when facing various degrees of OOD
data. We don’t have the ground truth of which data is OOD,
but we can utilize precision-recall (PR) curves and the area
under the PR curve (AUPR) to measure the relationship
between confidence scores and correct predictions. We define
whether a sample is considered as a correct classification
by the model (i.e., whether confidence is greater than a
threshold δ) as positive (P) or negative (N), and whether
it is truly classified correctly as true (T) or false (F). Then
we can plot the PR curve as shown in Fig. 8. Each point on
the curve corresponds to a confidence threshold δ. Ideally,
misclassified samples should correspond to relatively low
confidence values, and correctly classified samples should
correspond to high confidence values. In this ideal case,
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Fig. 9. Confidence distributions on training and test sets. The horizontal
axes for MC, EM, and MD are logarithmic, while SM and EDL are
uniformly distributed in [0, 1]. SM is calibrated with temperature T=5.
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Fig. 10. The strong correlation between KLConf and the performance
degradation. Different colors represent different confidence evaluation meth-
ods, and the Pearson correlation coefficient used to measure this correlation
is annotated in the bottom right corner.

the PR curve would tend towards the upper right corner,
forming a square with AUPR = 1. It can be observed that
on Easy, confidence can effectively distinguish samples with
low accuracy. As the severity of OOD increases, there is
a larger discrepancy between confidence metrics and the
ideal. Compared to other methods, confidence based on EM
performs the best. SM, though simple, also exhibits relatively
good performance.

Further, we examine the confidence distribution on the
training and test sets evaluated by various confidence meth-
ods. As shown in Fig. 9, it can be observed that in Entry,
which represents ID scenario, the confidence distribution
on the test set closely resembles that on the training set.
However, when encountering OOD problems, the distribution
on test set shifts left compared to the training set. The
disparity between the two distributions increases as the
severity of the OOD increases. This observation aligns with
the intuitive understanding of confidence and demonstrates
that existing confidence methods can effectively reflect dif-
ferences between training and test distributions. Intuitively,
on our dataset, confidence measured by EM exhibits the most
pronounced difference between training and test sets.

C. Quantification of Real-world OOD Problem

Inspired by Fig. 9, we propose the metric KLConf by cal-
culating the Kullback-Leibler (KL) divergence between the
confidence distribution of training and test set. Subsequently,
we compare KLConf with the decrease in test set accuracy
relative to the training set, as depicted in Fig. 10.

Specifically, we denote ctr as the confidence of training
set, cte as confidence of test set, mc = min(ctr, cte), Mc =
max(ctr, cte). We evenly split [mc, Mc] into N bins for
SM and EDL on regular coordinates, while on logarithmic
coordinates for EM, MC and MD. Taking SM as an example,

we denote ctr(i) as the proportion of confidence falling in
[mc + (i− 1)/N ∗ (Mc −mc), mc + i/N ∗ (Mc −mc)] for
ctr. cte(i) likewise. Then, KLConf can be calculated as:

KLConf = KL(cte||ctr) =
N∑
i=1

cte(i)log(
cte(i)

ctr(i)
) (9)

On four datasets, we compute the Pearson correlation coef-
ficient between KLConf and the decrease in test set accuracy
relative to the training set accuracy, as shown in Fig. 10.
Typically, an absolute Pearson correlation coefficient greater
than 0.8 is considered a strong correlation. Experimental
results indicate a strong correlation between KLConf and
the decline in model performance on the test set.

Furthermore, we investigate whether this strong correla-
tion holds for different categories. We select the EM and
EDL methods, which exhibit the best overall performance,
and the SM method, which demonstrates relatively good
performance with the most convenience. As shown in Tab.
V, for each category, we select samples from the training
and test sets whose ground truth is that category. The
final column of Tab. V calculates the Pearson correlation
coefficient for KLConf and accuracy decrease across 10
categories and 4 datasets. Experimental results demonstrate
that the aforementioned strong correlation persists, especially
in categories with large data size. Leveraging this property
in practical applications, users can be informed in advance
of the model’s reliability without the need for labels on the
test set, or alternatively, we can select OOD samples and
incorporate them into training.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we provide a high intra-class diversity terrain
classification dataset, TCPOSS. In random division, i.e.,
when data is entirely in-distribution, models are capable of
learning and overcoming the intra-class diversity in reality.
But when the severity of OOD increases, the performance of
deep classification model decreases accordingly. Due to the
costs associated with data collection and labeling, training
data often fail to comprehensively cover the entire potential
space. We propose KLConf by calculating the KL divergence
between confidence distribution of training and test set.
Experiments show that by calculating KLConf, it is possible
to anticipate the model performance on the test set without
requiring ground truth.

The future work can be extended in the following three
aspects. For terrain classification tasks, considering the in-
tegration of temporal information can yield robust results.

TABLE V
PEARSON CORRELATION COEFFICIENT FOR EM, EDL AND SM IN EACH CATEGORY

flagstone asphalt plastic grass cement brick sand soil gravel board total*

Pearson of EM 0.959 0.862 0.961 0.984 0.975 0.906 0.804 0.847 0.996 0.759 0.908

Pearson of EDL 0.910 0.866 0.948 0.991 0.988 0.970 0.798 0.866 0.996 0.888 0.880

Pearson of SM 0.950 0.908 0.969 0.839 0.996 0.955 0.821 0.079 0.996 0.927 0.875

Datasize 1322 1299 1169 1158 818 682 231 225 160 138 7202



Further, terrain traversability with a broader field of view
can be explored. For OOD problems, we can design detection
methods considering the intra-class diversity. Solutions may
draw inspiration from OOD generalization and data genera-
tion techniques. For real-world applications, we can explore
reasonable output forms beyond predefined categories con-
sidering both the downstream tasks and model performance.
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